Protocol Comparison

How MoltSpeak compares to existing protocols and standards for AI agent communication.

Executive Summary

MoltSpeak is designed specifically for agent-to-agent (A2A) communication with a focus on efficiency, security, and privacy. Existing protocols were designed for different purposes:

ProtocolPrimary PurposeA2A Fit
MoltSpeakA2A communication⭐⭐⭐⭐⭐ Native
MCPTool/resource access⭐⭐⭐ Good for tools
OpenAI FunctionsLLM tool calls⭐⭐ Single-agent focus
LangChainAgent orchestration⭐⭐⭐ Orchestration bias
REST/GraphQLAPI communication⭐⭐ Too low-level
gRPCService mesh⭐⭐ No agent semantics
ActivityPubSocial federation⭐ Wrong domain

Key Differentiators

🤖

Native A2A Semantics

Operations like task, handoff, consent are first-class citizens.

🛡️

Privacy Built-in

PII detection and consent are protocol-level, not app-level.

🔄

Capability Negotiation

Agents discover and verify each other's abilities.

🏷️

Classification Tags

Every message explicitly marked for sensitivity.

Feature Comparison Matrix

Feature MoltSpeak MCP OpenAI Functions LangChain gRPC
A2A Communication✅ Native⚠️ Partial❌ No⚠️ Partial❌ No
Tool Invocation✅ Yes✅ Native✅ Native✅ Yes⚠️ Manual
Task Delegation✅ Native❌ No❌ No⚠️ Custom❌ No
Streaming✅ Yes✅ Yes⚠️ Limited✅ Yes✅ Yes
E2E Encryption✅ Native❌ No❌ No❌ No⚠️ TLS only
Identity Verification✅ Native❌ No❌ No❌ No⚠️ mTLS
PII Detection✅ Native❌ No❌ No❌ No❌ No
Consent Tracking✅ Native❌ No❌ No❌ No❌ No
Data Classification✅ Native❌ No❌ No❌ No❌ No
Multi-Agent Coordination✅ Native❌ No❌ No⚠️ Custom❌ No
Human Auditable✅ JSON✅ JSON-RPC✅ JSON⚠️ Varies❌ Binary
Model Agnostic✅ Yes✅ Yes❌ OpenAI⚠️ Focus✅ Yes

Message Size Comparison

Same operation expressed in different formats:

Natural Language

"Hi, I need you to search the web 
for information about quantum 
computing breakthroughs in 2024."

Size: 167 bytes

MoltSpeak

{
  "v": "0.1", "id": "q1",
  "op": "tool",
  "p": {
    "action": "invoke",
    "tool": "web_search",
    "input": {
      "query": "quantum computing 2024",
      "max_results": 5
    }
  },
  "cls": "int"
}

Size: 177 bytes

Size Analysis

For simple tool calls, sizes are comparable. MoltSpeak's overhead pays off when you need sender/recipient identification, classification, signatures, and consent proofs—features that would require custom fields in other protocols.

MoltSpeak vs MCP

MCP (Model Context Protocol) was developed by Anthropic for Claude, focusing on tool/resource access using JSON-RPC 2.0 in a client-server model.

AspectMoltSpeakMCP
ArchitecturePeer-to-peerClient-server
IdentityAgent IDs + signaturesConnection-based
SessionsExplicit handshakeTransport-level
PrivacyBuilt-in PII handlingApp-level
ClassificationProtocol-levelNone

MCP Request

JSON
{
  "jsonrpc": "2.0",
  "id": 1,
  "method": "tools/call",
  "params": {
    "name": "read_file",
    "arguments": {"path": "/data/report.csv"}
  }
}

Equivalent MoltSpeak

JSON
{
  "v": "0.1",
  "id": "t-001",
  "op": "tool",
  "from": {"agent": "analyst-a1", "org": "acme"},
  "to": {"agent": "file-server-f1", "org": "acme"},
  "p": {
    "action": "invoke",
    "tool": "read_file",
    "input": {"path": "/data/report.csv"}
  },
  "cls": "conf",
  "sig": "ed25519:..."
}
When to use which?

MCP: Single agent accessing tools/resources, local tool integration, simple request-response patterns.

MoltSpeak: Multiple agents coordinating, cross-organization communication, privacy-sensitive data, audit requirements.

MoltSpeak vs OpenAI Functions

OpenAI Function Calling provides structured output from GPT models with schema-based tool definitions, tightly coupled to the OpenAI API.

AspectMoltSpeakOpenAI Functions
ScopeAgent-to-agentModel-to-app
DirectionBidirectionalModel → App
AuthenticationNativeAPI key only
Multi-modelYesOpenAI only
Task ManagementNativeNone

OpenAI Function Definition

JSON
{
  "name": "get_weather",
  "description": "Get weather for a location",
  "parameters": {
    "type": "object",
    "properties": {
      "location": {"type": "string"},
      "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}
    },
    "required": ["location"]
  }
}

Bridge Pattern: An MoltSpeak agent can internally use OpenAI function calling while communicating externally via MoltSpeak.

MoltSpeak vs LangChain/LangGraph

LangChain is a Python framework for LLM apps with agent and chain abstractions, tool and memory systems. LangGraph handles complex flows.

AspectMoltSpeakLangChain
TypeProtocolFramework
LanguageAnyPython/JS
ScopeWire formatFull stack
AgentsPeer-to-peerOrchestrated
StandardSpecificationImplementation
Complementary Use

LangChain/LangGraph orchestrates agents; MoltSpeak defines how they talk. LangChain agents can use MoltSpeak for external communication while using native LangChain patterns internally.

MoltSpeak vs gRPC

gRPC is a high-performance RPC framework with Protocol Buffers for serialization, strongly typed contracts, and native streaming support.

AspectMoltSpeakgRPC
SerializationJSONProtobuf (binary)
Human ReadableYesNo
Agent SemanticsNativeNone
Privacy FeaturesNativeNone
Learning CurveLowMedium

Layer Model

┌─────────────────────────────────────────┐ │ Application Layer │ │ (MoltSpeak messages) │ ├─────────────────────────────────────────┤ │ Transport Layer │ │ (gRPC / HTTP / WebSocket) │ └─────────────────────────────────────────┘

gRPC is a transport; MoltSpeak is a semantic protocol. They can work together.

MoltSpeak vs ActivityPub

ActivityPub is a W3C standard for federated social networks using an actor model with inbox/outbox pattern, used by Mastodon and others.

AspectMoltSpeakActivityPub
DomainAI AgentsSocial Networks
Actor TypeAgentsPeople/Bots
ContentStructured opsSocial objects
PrivacyNative PIIPublic default
Real-timeYesPolling-based

ActivityPub is for social federation; MoltSpeak is for agent coordination. Different domains with some conceptual overlap (actors, activities).

Use Case Analysis

Use CaseBest ChoiceWhy
Simple Tool Call OpenAI Functions or MCP No privacy concerns, no multi-agent coordination
Multi-Agent Pipeline MoltSpeak Native task delegation, progress tracking, handoffs
Privacy-Sensitive Data MoltSpeak Built-in consent, PII detection, classification
Cross-Org Agent Mesh MoltSpeak Strong identity, capability attestation
High-Performance Internal gRPC + MoltSpeak gRPC transport, MoltSpeak semantics

Migration Paths

From OpenAI Functions → MoltSpeak

Python
def openai_to_moltspeak(function_call, context):
    return {
        "v": "0.1",
        "id": str(uuid4()),
        "op": "tool",
        "from": context.current_agent,
        "to": context.tool_provider,
        "p": {
            "action": "invoke",
            "tool": function_call["name"],
            "input": json.loads(function_call["arguments"])
        },
        "cls": classify_data(function_call["arguments"])
    }

From MCP → MoltSpeak

Python
def mcp_to_moltspeak(mcp_request, sender, recipient):
    return {
        "v": "0.1",
        "id": str(mcp_request.get("id")),
        "op": "tool",
        "from": sender,
        "to": recipient,
        "p": {
            "action": "invoke" if mcp_request["method"] == "tools/call" else "list",
            "tool": mcp_request["params"].get("name"),
            "input": mcp_request["params"].get("arguments", {})
        },
        "cls": "int"
    }

From LangChain → MoltSpeak

Python
class MoltSpeakAgent:
    def __init__(self, langchain_agent, identity):
        self.agent = langchain_agent
        self.identity = identity
    
    def receive(self, moltspeak_msg):
        # Convert MoltSpeak to LangChain input
        result = self.agent.run(moltspeak_msg["p"])
        
        # Convert result back to MoltSpeak
        return {
            "v": "0.1",
            "op": "respond",
            "re": moltspeak_msg["id"],
            "from": self.identity,
            "p": {"data": result}
        }

Hybrid Approaches

MoltSpeak + MCP

Pattern: MoltSpeak for A2A, MCP for tool access

┌─────────────┐ MoltSpeak ┌─────────────┐ │ Agent A │◄──────────────►│ Agent B │ └──────┬──────┘ └──────┬──────┘ │ MCP │ MCP ▼ ▼ ┌─────────────┐ ┌─────────────┐ │ Tools A │ │ Tools B │ └─────────────┘ └─────────────┘

MoltSpeak + gRPC

Pattern: MoltSpeak semantics over gRPC transport

Protobuf
service MoltSpeakService {
  rpc Exchange(MoltSpeakMessage) returns (MoltSpeakMessage);
  rpc Session(stream MoltSpeakMessage) returns (stream MoltSpeakMessage);
}

message MoltSpeakEnvelope {
  string version = 1;
  bytes message_json = 2;  // MoltSpeak JSON
}

MoltSpeak + OpenAI Functions

Pattern: Internal function calling, external MoltSpeak

Python
class HybridAgent:
    def process(self, user_input):
        # Internal: Use OpenAI function calling
        response = openai.chat.completions.create(
            model="gpt-4",
            messages=[{"role": "user", "content": user_input}],
            functions=self.internal_functions
        )
        
        # External: Use MoltSpeak for delegation
        if needs_external_agent(response):
            moltspeak_msg = self.to_moltspeak(response)
            external_result = self.send_moltspeak(moltspeak_msg)
            return self.integrate_result(response, external_result)

Recommendation Summary

ScenarioRecommended Approach
Single agent + toolsMCP or OpenAI Functions
Multi-agent + privacyMoltSpeak
High performance internalgRPC with MoltSpeak semantics
Cross-org federationMoltSpeak
Rapid prototypingLangChain (add MoltSpeak later)
Existing OpenAI appKeep Functions, add MoltSpeak for A2A
Full stack new buildMoltSpeak + MCP for tools
Conclusion

MoltSpeak isn't meant to replace existing protocols—it fills a gap they don't address: secure, privacy-preserving, semantically rich agent-to-agent communication.

The ideal architecture often combines multiple protocols: MoltSpeak for agent coordination, MCP for tool access, OpenAI Functions for LLM structure, gRPC for performance-critical paths.